長大橋ニューズレター Long-Span Bridge Newsletter

令和 7 年 4 月 April 2025 **No.100**

JB 本四高速情報

BIM/CIM 活用における長大橋維持管理の高度 化(MRを用いた点検技術)

長大橋点検業務の効率化を目的とし、3次元モデルによる情報マネジメントが可能なBIMと仮想空間上の3次元モデルを現実空間と重ね合わせることでデジタルコンテンツを直感的に操作可能とするMixed Reality(MR) 技術を活用した次世代の橋梁点検支援ツール、BIX-eyeを開発しました。

BIX-eyeは、設計データを現実空間に実寸大で投影する技術「GyroEye」を利用し、点検現場でタブレット端末が撮影したカメラ画像と3次元モデルを重ね合わせることで、部材の選択や変状の位置情報(部材名称や3次元位置座標)の記録が簡単にできます。過去の点検記録の確認や新しい変状の登録もスムーズに行え、維持管理に必要な情報はあらかじめ3次元モデルに組み込まれているため、追加の記録作業は不要となります。

点検開始時の初期位置設定には高精度なRTK測位 方式を採用することによって、サイバー空間とフィジ カル空間の重ね合わせを高精度で行うことができま す。初期位置設定後は、自己位置推定技術「SLA M」によりサイバー空間とフィジカル空間との重ね合 わせが点検作業員の移動に対して自動追従されるた め、衛星電波不感地帯に移動しても問題なく使用でき ます。

従来の点検方法では、事前準備や資料作成に多くの 労力が必要でしたが、BIX-eyeを導入すること で、3次元モデルに直接変状位置を登録でき、過去に 登録した変状も現地で簡単に確認、更新できるため、 過去の点検記録や記録用図面の事前準備が不要にな り、現場での入力作業が省略され、点検後の事務作業 も効率化されます。本技術は、マスコミにも取り上げ られ、大きな反響がありました。

来年度に大島大橋で導入し、順次、明石海峡大橋などへの展開を予定しています。

写真-1 主塔のカメラ映像と BIM モデルの重ね合わせ Photol Overlaying Camera image of the Main Tower with the BIM Model

Activity of HSBE

Enhancing Long-Span Bridge Maintenance with BIM and MR-Based Inspection Technology

HSBE developed BIX-eye, a next-generation bridge inspection support system designed to enhance the efficiency and accuracy of long-span bridge inspections. BIX-eye integrates Building Information Modeling (BIM) for advanced 3D-based information management and Mixed Reality (MR) technology, providing an intuitive and immersive interface for digital content interaction.

A key feature of BIX-eye is its integration with GyroEye, an MR technology that overlays full-scale design data onto the physical environment. By overlaying virtual 3D models on real-time tablet device camera images, inspectors can seamlessly select structural components and document anomalies, including component names and precise 3D coordinates. Additionally, historical inspection data can be readily accessed and updated on-site, eliminating the need for redundant manual record-keeping, as essential maintenance information is embedded directly within the 3D models.

To ensure precise spatial alignment at the beginning of an inspection, high-precision RTK positioning is employed, enabling accurate synchronization between cyber and physical spaces. Once initialized, Simultaneous Localization and Mapping (SLAM) technology continuously tracks and updates the inspector's position in real-time, ensuring seamless system operation even in areas with limited satellite signal reception.

Traditional bridge inspection methods often involve laborintensive preparation and documentation. In contrast, BIXeye streamlines this process by enabling direct anomaly registration onto the 3D models, facilitating real-time access to past records and eliminating the need for extensive preinspection documentation. This not only reduces on-site data entry but also significantly improves post-inspection workflow efficiency. This system was covered by the mass media and received a great response.

The deployment of BIX-eye will be introduced in Ohshima Bridge in the upcoming fiscal year, with plans for gradual expansion to Akashi-Kaikyo Bridge and other long-span bridges.

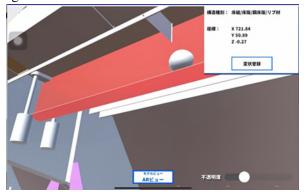


図-1 リブ材をタップした際の属性情報表示 Fig.1 Displaying Attribute Information When Tapping a Rib Member

国内プロジェクト

関西国際空港連絡橋の耐震補強工事

関西国際空港連絡橋は、橋長3,750mの道路・鉄道併用橋であり、関西国際空港島への唯一の陸上アクセスを担っております。海上中央部のトラス橋と両側の鋼箱桁橋で構成されており、トラス橋では上部に道路が、トラス内部に鉄道が設置されています。コロナ禍後のインバウンド需要の回復等により、2024年の利用状況は高速道路が約23千台/日、鉄道が約77千人/日となっています。

耐震補強設計において、本橋付近の各断層による影響を考慮することとし、照査用地震動には道路橋示方書及び鉄道構造物等設計標準に示される設計用地震動に加えて、南海トラフ地震等を想定した複数のサイト波を作成し照査を進めました。

上記照査により、大規模地震動に対して上部及び下部構造の安定性を確保するため、トラス橋においては、全48基のピボット支承を免震支承(鉛プラグ入り積層ゴム支承)へ取替えることで免震化するとともに、当て板補強、段差防止工設置を行うこととしました。

免震化に伴い列車走行安全性の確保が課題となりましたが、L1 地震動までは橋軸直角方向を拘束し、L1 地震動を超える水平荷重発生時に免震効果を発揮させるノックオフ機能を有するブラケットの採用により免震構造を実現しました。

当て板補強では、詳細にモデル化した FEM 解析により必要なボルト本数・設置範囲を明らかにすることで、現場削孔数を大幅に低減しました。

また、鋼箱桁部においては、道路桁は BP-B 支承および免震支承へ(全 56 基)、鉄道桁は BP-B 支承へ(全 38 基) それぞれ取り替えることとしています。

2025年3月現在、トラス橋部では免震支承の製作に 着手しており、鋼箱桁部では道路桁の支承取替作業を 進めています。

(新関西国際空港㈱、NEXCO 西日本より情報提供して頂きました。)

写真-2 トラス橋部 Photo2 Truss bridge section

Project in Japan

<u>Seismic retrofit project of Kansai International</u> <u>Airport Access Bridge</u>

The Kansai International Airport Access Bridge is a 3,750-meter-long road-rail bridge that provides the only land access to the Kansai International Airport Island. It consists of a truss bridge in the center of the sea and steel box girder bridges on both sides. The truss bridge has a road on the upper part and a railroad inside the truss. After a pandemic of COVID-19, the road traffic reached approximately 23,000 vehicles/day and the railway passenger reached approximately 77,000 passengers/day in 2024.

The seismic retrofit design of the bridge considered the seismic motion specified in the Specification of Highway Bridges and the Design Standards for Railway Structures and Commentary. Furthermore, the design was verified with several regional site-specific seismic waves assuming a Nankai Trough Earthquake.

According to the verification, all 48 pivot bearings were replaced with seismic isolation bearings (lead-plugged laminated rubber bearings) and installed stiffening plates and anti-faulting devices for ensuring the stability of the upper and lower structures against large-scale seismic motion.

In addition, using knock-off function brackets realized that restraints perpendicular to the bridge axis up to Level 1 earthquake ground motion and provide seismic isolation when a horizontal load exceeding Level 1 motion is generated and ensures safety of train running.

For stiffening plates, detailed modeling and FEM analysis contribute to clarifying the number of bolts required and their installation range and reducing the number of holes drilled onsite significantly.

In the steel box girder section, 56 bearings of road girder will be replaced with pot bearings and seismic isolation bearings and 38 bearings of railway girder will be replaced with pot bearings.

As of March 2025, fabrication of seismic isolation bearings has begun for the truss bridge section, and replacement of road girder bearings are underway for the steel box girder section

(Information Provider: NEXCO-West and NKIAC)

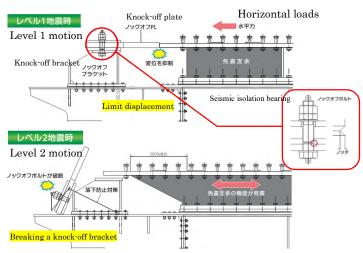


図-2 支承及びブラケット

Fig.2 Bearing and Bracket

海外プロジェクト

斜張橋ケーブル定着部の湿度モニタリング及び 除湿システム(スウェーデン)

ウッデバラ橋は、スウェーデンの中央径間 414m の 斜張橋であり、2000年に供用開始しました。2000年以 降、斜ケーブル定着部で水の浸入が確認されており、ケ ーブルストランドの腐食のリスクがありました。そこ で、湿度モニタリングシステムを設置し、原因の調査を 実施しました。

モニタリングシステムは、温度計、相対湿度計、表面 温度計及びリーフウェットネスセンサで構成され、2ヶ 所のケーブル定着部に設置されています。記録された データは、季節、気象条件及び設置位置ごとに分析しま した。モニタリングシステムの概念図は、図3に示す とおりです。モニタリングの結果、雨水の浸入や結露に よる滞水には、定着部の形状(大きさや傾斜)、日射、 定着部の維持管理の程度などが重要な要因であること がわかりました。

ケーブル定着部内の滞水を緩和するために、試作の 除湿システムを、モニタリングしている2ヶ所へ2023 年5月に設置しました(図4)。モニタリングデータは、 ケーブル除湿システムのキャリブレーションに利用し ています。除湿システム設置の目的は、ケーブル定着部 内部の空気を理想的な状態にすること、具体的には、相 対湿度を 40%以下とすることです。結露の防止や定着 部内部に浸入した雨水の乾燥を促進させることで、腐 食リスクをなくすことを期待しています。

モニタリングデータによると、試作の除湿システム は、相対湿度の変動と平均値を効果的に低減させてい ます(図5)。また、ほかのケーブル定着部への除湿シ ステムの導入実現への基礎となりました。

除湿システムの性能評価は現在も進行中であり、送 気空気や定着部の気密性などの工夫により最適化を図 っています。

(スウェーデン運輸省より情報提供して頂きました。)

Overseas Project

Moisture monitoring and dehumidification system for anchorages of cable stayed bridge in Sweden

The Uddevalla Bridge is a cable stayed bridge with a center span of 414m. The bridge is located in Sweden and was opened to traffic in 2000. In the bridge, water presence in the lower cable anchorages has been confirmed since 2000, implying a risk of corrosion for the cable strands. Thus, it was decided to investigate in detail the issue and its causes by installing a moisture monitoring system.

The monitoring system was installed on two anchorages and includes air temperature sensors, relative humidity (RH) sensors, surface temperature sensors and Leaf Wetness Sensors. The recorded data have been processed and analyzed through different seasons, weather conditions and adjustments to the anchorages. The layout of the monitoring system is described in Figure 3. As result of the monitoring, it was found that factors such as geometry (size and inclination) of the anchorages, sun radiation and interventions or physical changes to the anchorages are important for the water presence, either from rain ingress or from condensation.

In order to mitigate the issue of the water presence in the lower cable anchorages, the prototype dehumidification system shown in Figure 4 was installed on the two monitored anchorages in May 2023. The information gathered from the monitoring data is being used to calibrate a prototype dehumidification system. The objective is to achieve the desired air conditions inside of the anchorages, namely a relative humidity below 40%, which is expected to eliminate the risk of corrosion, by avoiding the formation of condensation and by facilitating the drying process of the water potentially leaking into the anchorage during rain.

Monitoring data show that the prototype dehumidification system effectively reduces RH oscillations and average value (Figure 5), setting the basis for a potential extension of the dehumidification system to all anchorages.

The evaluation of the dehumidification system's performance is ongoing and its performance is being optimized by acting on e.g. the conditions of input air and airtightness of anchorage.

(This information was provided by Trafikverket, Swedish

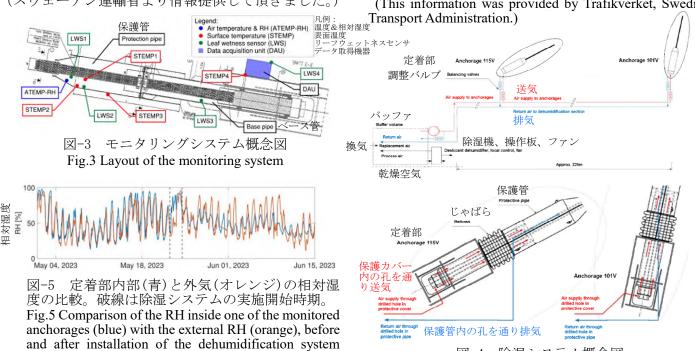


図-4 除湿システム概念図 Fig.4 Layout of the monitoring system

(grey dashed).

海外プロジェクト

西堠門鉄道道路両用大橋(中国)

西堠門鉄道道路両用大橋は、中国浙江省の「寧波—舟山第二高速道路」と「寧波—舟山高速鉄道」の一部として、西堠門水道を跨いて舟山市の金塘島と册子島を結びます。本橋は現在供用中の「寧波—舟山高速道路」

(G9211)の一部である西堠門大橋 (2009年開通)の北2.8km に位置しています。橋梁全長は3118.226m であり、そのうち、道鉄併用の主橋梁部は2664m、主径間は1448mで、道鉄併用橋としては世界最長の橋(建設中橋梁を含む)になります。

主橋梁部の橋梁形式は斜張吊橋であり、支間割は (70+112+406+1488+406+112+70) となります。主桁は 耐風性に優れた 3 室分離型箱桁構造を採用しており、全幅は 68m (ウィンドフェアリングを含む) となります。また、主橋梁部は高速道路と高速鉄道を同じ層に配置する構造で、中央に幅員 13m の 2 車線、あるいは複線の旅客鉄道 (設計速度 250km/h) を配置しており、両側に片側 3 車線の高速道路 (片側幅員 16.25m) を配置しています。

主橋梁部の主ケーブルの支間割は(683 + 1488 + 677) m であり、サグ比は 1/6.5、サグは 228.923m となります。主ケーブルは横方向に 2 本配置され、空間可変幅ケーブルシステムを採用しており、世界で初めて海上高速鉄道橋に適用されました。ハンガーロープ区間の長さが 686.2m で、主ケーブル間隔は主塔上部で 6m から支間中央部で 26.458mへと変化する構造です。

主ケーブルは 1 本につき 127 本のストランドで構成され、各ストランドは直径 5.85mm の亜鉛アルミニウム合金被覆の高強度ワイヤー (標準引張強度は 2000MPa) 127 本で構成され、 1 本のストランド重量は約 82 トンで、主ケーブルの断面直径 (ケーブルクランプ内) は820mm になります。

主塔は鉄筋コンクリート構造(コンクリートは C60 タイプを使用)の A 型塔であり、高さ(基礎を含む)が 294mで、海峡部の道鉄併用橋としては世界一の高さとなります。

主橋梁部は8基の橋脚があり、そのうち、4Pと5Pは主塔の橋脚となります。4Pは円形ケーソン(直径58m)が採用されており、これは世界初の海峡部橋梁の埋め込み式のケーソンとなります。5Pは18本の直径6.3m

Overseas Project

Xihoumen Rail-cum-Road Cross-Sea Bridge in China

Xihoumen Rail-cum-Road Bridge is a cross-sea bridge shared by the Ningbo-Zhoushan Railway and Expressway in Zhejiang Province, China, across the Xihoumen Waterway, connecting Zhoushan Jintang Island and Cezi Island. The bridge is located 2.8km to the north of Xihomen Bridge (completed in 2009) on the existing G9211 Ningbo-Zhoushan Expressway. The total length of the whole bridge is 3118.226 m, of which the rail-cum-road main bridge is 2664 m long and the main span is 1488 m, making it the longest rail-cum-road bridge in the world including under construction bridges.

Cable-stayed suspension cooperative system is adopted for the main bridge, with a span arrangement of (70 + 112 + 406 + 1488 + 406 + 112 + 70) m. The main girder is a three-box separated steel box girder structure with excellent wind resistance, with a total width of 68 m (including wind fairings). The main bridge is built with highways and railways on the same floor, and one-way three-lane expressways (design speed of 100 km/H) are arranged on the left and right sides, each side of width is 16.25 m. In the center, a double-track passenger railway (design speed of 250 km/H) is arranged with a width of 13 m.

The span of the main cable is (683 + 1488 + 677) m, the rise-span ratio of the mid-span main cable is 1/6.5, and the sag is 228.923 m. Two main cables are arranged transversely, and the spatial luffing cable system is adopted, which is the first application of the cross-sea high-speed railway bridge in the world. The suspension section is 686.2m long, with a transverse spacing of 6m at the top of the main tower and a transverse spacing of 26.458m at the midspan. Each main cable consists of 127 strands, each consisting of 127 wires with a diameter of 5.85mm zinc-aluminum alloy coated high-strength steel wire, the standard tensile strength of the main cable steel wire is 2000 MPa, the weight of a single cable strand is about 82 tons, and the diameter of the main cable section after rounding is 820 mm (in the cable clamp).

The main tower is an A-type reinforced concrete structure with a height of 294 m (including the tower base), making it the highest tower of Rail-cum-Road Cross-Sea Bridge on the world, and the body is made of C60 concrete. The main bridge has 8 piers, of which the No.4 and No.5 piers are the main pylon piers. The No.4 main pier adopts a circular caisson foundation with a diameter of 58 m, which is the first embedded caisson foundation of the world's cross-

(世界最大径となります)の中空杭が採用され、1本 の杭の杭長は84m、コンクリート量は3,000 m³です。 また、アンカレイジについて、金塘島側で採用された プレストレス岩着式アンカレイジが世界最大規模とな ります。

本橋は2022年10月31日に着工されました。2024 年12月19日に、最初の主塔の水平材の打設が完了 し、海峡部橋梁の主塔打設作業において一度に打設さ れたコンクリート量の世界記録を更新しました。2025 年2月10日時点で、6本の海中橋脚と重力式アンカレ イジの工事が完了し、4Pのケーソン工事と岩着式ア ンカレイジ工事が鋭意進められています。

(浙江省交通集団高速公路橋梁技術センターより情報 提供して頂きました)

sea bridge. The No.5 main pier adopts 18 superlarge diameter(6.3m) hollow bored piles, which are the largest bridge bored piles in the world at present, with a pile length of 84 m and a single pile concrete volume of 3000 m³. Jintang side anchor block adopts large prestressed rock anchor, which is the largest rock anchor in the world.

The construction work was officially started on October 31, 2022. On December 19, 2024, the first crossbeam under the main tower was casted, setting a world record for the largest volume of one-time casting in the construction of the pier body of the cross-sea bridge. As of February 10, 2025, the bridge has completed the construction of six piers in the sea and the main structure of gravity anchor, and the caisson foundation and rock anchor of No.4 main tower are under intensive construction. The whole bridge is expected to be completed and opened to traffic in 2028.

(This information was provided by Zhejiang Communications Investment Group Bridge Engineering Center.)

写真-3 建設の様子 Photo 3 Construction of the bridge

図-7 道路及び鉄道の配置 Fig.7 Arrangement of the road and railway

図-6 橋梁イメージ図

海外プロジェクト

海外の橋梁技術者を対象とした研修

本州四国連絡高速道路株式会社は、それまで経験の なかった長大橋梁も含め橋梁の調査・設計・建設・維持 管理まで一貫して実施してきた経験を活用し、国内外 で技術協力を行ってきています。その一つとして、開発 途上国の政府や道路公社等の橋梁技術者を対象とした 日本国内での研修を、2011 年度から(独)国際協力機構 から受託して実施しており、2011 年度から 2024 年度 まで 48 か国 204 名の橋梁技術者が研修員として参加 しました。

研修は、橋梁の調査・設計から維持管理まで総括的に 網羅した内容で約 1 か月半にわたって行われ、まず研 修員による各国事情や橋梁にまつわる課題等について 発表していただいて情報共有・討議から始まります。そ の後、本四高速だけではなく、国土交通省、研究所、コ ンサルタント、ゼネコン、橋梁メーカー等各企業の海外 経験の豊富な講師による、橋梁計画や各種調査、コンク リート橋・鋼橋の上下部工・橋梁付属物や舗装も含めた 設計、製作、架設、維持管理の座学の研修を行います。 その間にも鋼橋及びコンクリート橋の製作工場や架設 工事現場の視察や構造解析ソフトを使用した設計の実 習も行います。後半には本州四国連絡橋も視察してそ の建設や維持管理に関する学習や点検実習もしていた だいております。そして研修の最後には、帰国後研修で 学んだことを用いた活動計画の発表・討議を行ってい ただいて終了となります。例年座学や視察においては 研修員から活発な質疑応答が行われ、研修員は橋梁に 関する最新の技術、本州四国連絡橋の規模の大きさ、維 持管理の考え方などに感銘を受けられて満足されるこ とが多く、研修を実施する担当者もやりがいを感じる ところです。

橋梁技術に関する研修の他、活動計画策定のための 手法に関するワークショップや、日本語の学習や日本 文化体験プログラムも盛り込んでおり、研修に伴う日 本での生活、高速道路や新幹線を使用して移動するこ ともあり、このような経験も研修員にとって貴重な経 験となっているようです。

今後も本州四国連絡橋を建設・維持管理している経 験を生かして、様々な形で多くの国々に貢献したいと 考えております。研修実施に当たり、ご理解・ご協力を いただいている関係各位に感謝申し上げます。

写真-4 座学研修のようす Photo 4 Classroom training

Overseas Project

Technical training for overseas bridge engineers

Honshu-Shikoku Bridge Expressway Company (HSBE) has been carrying out technical cooperation around the world by utilizing its experience in survey, design, construction and maintenance of bridges including long-span bridges. As one of the cooperation, HSBE has been conducting technical training in Japan for bridge engineers from governments and road authorities in developing countries under contract with the Japan International Cooperation Agency (JICA) since 2011. From 2011 to 2024, two hundred and four engineers from forty eight countries participated as trainees.

The training covers comprehensive bridge engineering from survey and design to maintenance and lasts about a month and a half. The training begins with presentations by trainees on the situation and issues related to bridges in their countries, followed by information sharing and discussions. After that, not only HSBE but also the Ministry of Land, Infrastructure, Transport and Tourism, research institutes, consultants, general contractors and bridge manufactures provides classroom lectures on bridge planning, various surveys, design, fabrication, construction and maintenance of concrete and steel bridges, including superstructures and substructures, bridge accessories and pavements. During the training, participants will also visit steel and concrete bridge fabrication plants and construction site and practice design using structural analysis software. In the latter half of the program, the participants also visit the Honshu-Shikoku Bridges to learn about their construction and maintenance management, as well as to practice inspections. At the end of the training, participants present and discuss their activity plan based on what they have learned. The trainees are often impressed and satisfied with the latest bridge technology, the scale of the Honshu-Shikoku Bridges and concept of maintenance and management. This is rewarding for trainers of HSBE.

In addition to the bridge engineering training, the training also includes workshop on methods for activity planning, Japanese language learning and Japanese cultural experience programs. The program is a valuable experience for trainees.

HSBE would like to continue to contribute to many countries in various ways by making the most of our experience. HSBE would like to express our gratitude to all those involved for their understanding and cooperation in the implementation of the training.

写真-5 本四連絡橋の現場視察 Photo 5 Site visit on Honshu-Shikoku Bridge

国際会議

IRF グローバルロード会議(米国)

2024年12月10日から13日にかけて、IRFグローバルロード会議が世界道路連盟 (International Road Federation: IRF)の主催により「道路の未来を切り開く」のテーマによりアメリカのオーランドで開催されました。

60 以上セッションが行われ、環境に配慮したインフラ や 高 度 道 路 交 通 システム (Intelligent Transport Systems: ITS) などの新技術による、持続可能な交通ネットワークのあり方が議論されました。

IRF は道路開発に関する公的機関と私的機関との交流を目的に 1948 年に設立されました。 本四高速からは保全部電気通信課の堀川が「次世代低位置道路照明の開発と試験」と題して本四高速が管理する海峡部長大橋梁に設置する、橋梁用広スパン低位置道路照明について論文発表を行いました。司会者や聴講者からも素晴らしい道路照明であり、他の道路への採用も期待できるとのコメントをいただきました。

会議期間を通じて、AIを活用した道路の維持管理、EV用の充電舗装、非接触埋め込み充電に最適な舗装などの土木と電気の複合的な技術考察やCCAMと呼ばれる人と物の移動に関する包括的サービスを構築する試み等の新たな取組に関する、幅広い発表がありました。

会議と同時に展示会も催され、交通管理システムから建設資材までの幅広い分野のベンダーによる展示がありました。展示会では、デモンストレーション等を通じて、参加者は幅広い情報交換を行っていました。

2025年の IRF グローバルロード会議は、アメリカ (ロサンゼルス) で 12月 9日から 12日にかけて開催 される予定です。

写真-6 会議の様子 Photo 6 IRF Global Road Conference

International Conference

IRF Global Road Conference (USA)

From December 10 to 13, 2024, the IRF Global Road Conference was held in Orlando, USA, under the theme of "Paving the Way for the Future of Roads", organized by the International Road Federation (IRF).

More than 60 sessions were held, and the sustainable transportation networks was discussed, especially about new technologies such as environmentally friendly infrastructure and Intelligent Transport Systems (ITS).

IRF was established in 1948 with the aim of promoting exchanges between public and private institutions regarding road development. From Honshu-Shikoku Bridge Expressway Co., Ltd., Mr. Horikawa (Maintenance Department, Telecommunications Division) presented a paper titled "Development and Testing of Next-Generation Low-Position Road Lighting" on wide-span low-position road lighting for bridges to be installed on the long-span bridges managed by Honshu-Shikoku Bridge Expressway Co., Ltd. The chair and audience commented that it was excellent road lighting and that they hope it will be adopted on other roads as well.

Throughout the conference, there were a wide range of presentations on new initiatives about the combined technical considerations of civil engineering and electricity and attempts to build a comprehensive service for the movement of people and goods known as CCAM, such as the use of AI for road maintenance and management, charging pavements for EVs, and pavements ideal for contactless embedded charging.

An exhibition was held simultaneously with the conference, featuring displays by vendors in a wide range of fields, from traffic management systems to construction materials. At the exhibition, participants exchanged a wide range of information through demonstrations and other activities.

The 2025 IRF Global Road Conference is scheduled to be held in the USA (Los Angeles) from December 9th to 12th.

写真-7 展示会の様子 Photo 7 Exhibition

JB 本四高速情報

長大橋ニューズレター100 号によせて

長大橋ニューズレターをいつもご愛読いただき誠にありがとうございます。本号、2025 年 4 月号で第 100 号の発刊を迎えることができました。この記念すべき第 100 号によせて、これまでの歩みを振り返ってみたいと思います。

長大橋ニューズレターは、長大橋に関する情報小紙として1999年6月に創刊しました。本誌は、当社の前身である本四公団内の組織として長大橋技術センター(現長大橋技術部)が同年5月に発足したことを契機に、本四連絡橋については勿論、その他の国内外の長大橋に関する話題を掲載して、長大橋に携わる方々の情報交換の場となることを目的に、創刊されました。2005年の民営化以降も、「長大橋技術の拠点として、国内外の橋梁技術の発展を支援する」という狙いのもと発行を続けています。

創刊から25年の間、これまで、国内プロジェクトでは約40橋、海外プロジェクトでは約25ヶ国60橋の建設や維持管理に関する情報をお届けして参りました。

筆者らが国際会議に参加すると、各国の管理者から「長大橋ニューズレター読んでいるよ!」と声をかけていただくことがあります。今後も本誌が国内のみならず世界を繋ぐ情報交換の場になればと思います。ご愛読のほどよろしくお願いいたします。

Activity of HSBE

100th issue of Long-Span Bridge Newsletter

Thank you for reading the Long-Span Bridge Newsletter. The Long-Span Bridge Newsletter marks the publication of our 100th issue in April 2025. With this memorable 100th issue, let's take a look back at the newsletter's history.

The Long-Span Bridge Newsletter was first published in June 1999 as an informational newsletter regarding long-span bridges. The newsletter was started when the Long-Span Bridge Engineering Center was established in May 1999 as a department within the Honshu-Shikoku Bridge Authority (HSBA). The newsletter was published with the hope that it would serve as a forum for the exchange of information among people involved with long-span bridges. Since the privatization in 2005, HSBE is publishing for supporting the development of bridge technology around the world as a base concept.

For 25 years after the first issue, the newsletter has reflected each era from aspect of long-span bridges. The newsletter have published information on the construction and maintenance of about 40 bridges in Japan and 60 bridges in 25 countries in overseas project.

When the authors participated in international conference, we are often told by readers from various countries. We are impressed that the newsletter has become a forum for exchange of information on the long-span bridge not only domestically but also internationally. We hope that you will continue to read our newsletter.

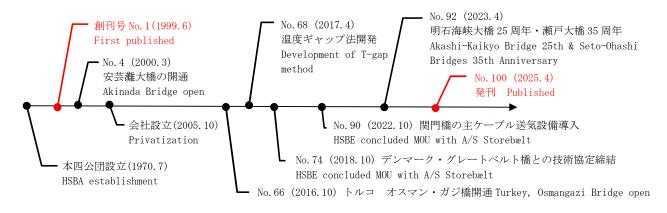


図-7 長大橋ニューズレターの歩み Fig.7 History of Long-Span Bridge Newsletter

本州四国連絡高速道路株式会社 〒651-0088 神戸市中央区小野柄通 4-1-22 (アーバンエース三宮ビル) Tel: 078 (291) 1071 Fax: 078 (291) 1087

長大橋技術部(長大橋技術センター)

https://www.jb-honshi.co.jp

Honshu-Shikoku Bridge Expressway Co., LTD. 4-1-22 Onoedori, Chuo-ku, Kobe, 651-0088, Japan Tel: +81-78-291-1071 Fax: +81-78-291-1087 Long-Span Bridge Engineering Center https://www.jb-honshi.co.jp

発注者支援業務について

本州四国連絡高速道路株式会社では、本州四国連絡橋の建設・維持管理を通じて培った技術を発注者支援業務という形で提供を進めてまいります。 橋梁の計画・設計・施工から維持管理まで、事業主体の立場に立って技術的サポートをさせていただきます。 ご相談連絡先:長大橋技術部 技術支援課 TEL 078 (291) 1337