

JB 本四高速情報

新たな送気モニタリングシステム「DRIoT」の導入

吊橋主ケーブルには、除塩除湿した空気を主ケーブル内に送風し、亜鉛めっき鋼線を腐食させない環境とすることで防食する「ケーブル送気乾燥システム（以下、「送気システム」という。）」が実装され、現在、本四高速が管理する全ての吊橋や国内外の主要な長大吊橋に導入されています。

送気システムで、温湿度を24時間計測するセンサを主要なケーブルバンド内に設置しており、データを自動モニタリングしています。これらセンサ等の更新は、有線であるため多くの費用と時間を要しており、交換場所は高所であるため、安全性に課題がありました。

そこで、大島大橋では主ケーブル上での作業を軽減するために計測センサから記録装置までの配線を無くし、無線化することで遠隔で自動モニタリング可能な手法を開発しました。本手法は、近年のIT技術の発達により、低電力での無線通信技術や自己発電パネル等のモジュールが安価に供給されていることに着目した開発です。

2022年度から2024年度にかけて、無線通信機及びモニタリングソフトの仕様検討、試作器の製造・実橋での通信試験および閲覧アプリの試作等を実施し、2025年度に大島大橋の自動モニタリング機器の更新に併せて、新たな送気システムの温湿度自動モニタリング「DRIoT（ドライオット）」として導入しました。

今後は、大島大橋での運用実績を積み重ね、明石海峡大橋等においても自動モニタリング機器の更新に合わせて導入していく予定です。

図-1 DRIoT イメージ図

Fig 1 DRIoT image

JB 本四高速情報

吊橋ハンガーロープ定着部周辺のひずみ測定による張力変動推定に関する検討

吊橋ハンガーロープ（以下「ハンガー」という。）は補剛材に加わる荷重を主ケーブルに伝達するための重要な部材であり、ハンガーの張力測定は吊橋の健全性を把握するために不可欠な項目の一つです。通常の測定では、ハンガーに加わる常時張力を振動法を用いて測定するのが主流ですが、ロープ類の腐食に伴う断面欠損が問題となる中、ハンガー取替といった工事での隣接ハンガーにおける張力変動の監視や、疲労耐久性評価の基礎資料として、ハンガーの経時的な張力変動を把握することも重要であると考えられます。一方で、振動法では経時的な張力変動の把握が困難であること、ロードセルやジャッキを用いた測定では足場や機材の設置に多大な労力を要する等の課題があります。

そこで、ハンガーフレーム（鉛直リブ）に着目し、活荷重等によるハンガーの張力変動に伴って補剛材に発生する応力変化から、ハンガー張力変動を簡便に推定する手法の検討を行いました。具体的には、瀬戸大橋の吊橋ハンガーブラケットを対象とした解析モデルを作成し、ハンガーフレーム周辺における応力解析からハンガー張力と補剛材に発生する応力の関係性を整理することで、推定手法の提案を行いました（図-2）。

また、瀬戸大橋のハンガーフレーム取替工事に合わせて実橋測定を行い（写真-1）、定着部補剛材のひずみ値から推定した張力変動と、ロードセルにより直接測定した張力変動を比較した結果、図-3のように両者の値にはおおむねの整合性が確認されたことから、定着部補剛材におけるひずみ測定を通じてハンガーの張力変動を推定できる可能性が示唆されました。今後、活荷重に伴うハンガー張力変動を把握する必要性が生じた際等において、本手法の活用が期待できると考えています。

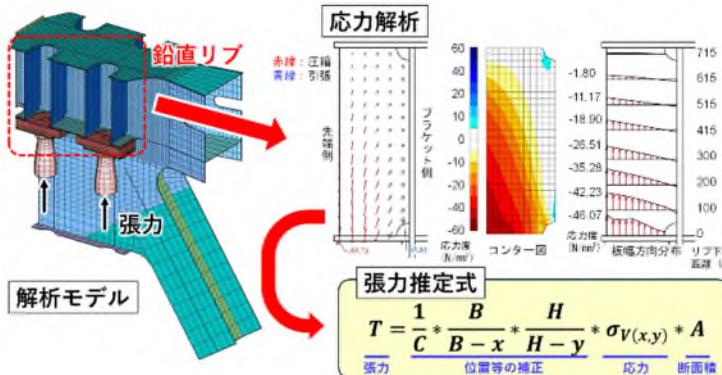


図-2 ハンガー張力変動推定手法の解析的検討

Fig. 2 Analytical study of suspender rope tension

Activity of HSBE

Estimation of suspender rope tension fluctuations by strain measurement of stiffener at suspender rope anchorage

The suspension bridge suspender ropes (hereinafter “suspenders”) are vital structural members, and measuring their tension is essential for assessing the bridge’s integrity. While the vibration method is commonly used to measure the static tension in suspenders, understanding tension variation is also important, for instance when monitoring tension in adjacent suspenders during replacement works or acquiring fundamental data for fatigue durability assessment. Yet the vibration method is unsuitable for tracking temporal variations, and load-cell measurements require extensive scaffolding and equipment.

To address these limitations, we focused on the stiffeners (vertical ribs) at the suspender anchorage and explored a simple method to estimate suspender tension variation from the stresses induced in these stiffeners. An analytical model of the suspender brackets was developed, and stress analysis around the suspender anchorage clarified the relationship between suspender tension and the stress generated in the stiffeners. Based on this, an estimation approach was formulated.

Field measurements were conducted on the suspenders. Suspender tension variations estimated from strains measured on the anchorage stiffeners were compared with those directly measured by load cells. The results showed generally good agreement, indicating that suspender tension can potentially be estimated through strain measurements at the anchorage. This method is expected to be useful for monitoring tension variations caused by live loads.

写真-1 ハンガー架替時における実橋測定状況

Photo 1 Measurement at suspender rope

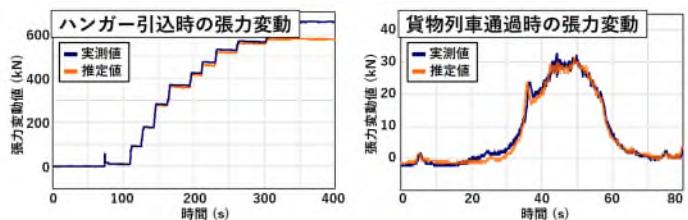


図-3 実橋測定結果（一部）

Fig. 3 Measurement results (partial) replacement

技術貢献

海外(デンマーク)における赤外線カメラによる疲労亀裂検出技術の適用性確認

JB 本四高速では神戸大学との共同研究において赤外線カメラを用いてUリブ鋼床版に生じた疲労亀裂を検出する技術を開発しています。この技術は、日射で路面が暖められることにより生じる熱を利用して遠隔から塗膜を剥ぐことなく亀裂を検出する技術です。過去に本四連絡橋で実施した検証では、この検出技術を適用するためには、デッキプレートの下面とUリブの側面の温度差が0.5°C以上あることが必要とされています。この温度差は、太陽高度の影響を大きく受けることがわかっています。そのことから、実際にデンマークのリトルベルト橋でこの検出技術による亀裂調査を試行し、デンマークにおけるこの検出技術の適用性の確認を実施しました。

リトルベルト橋は、デンマークのフュン島とユトランド半島本土を結ぶ吊橋です。1970年に供用開始しており、全長が1,080m、中央支間長600m、側径間長240mの橋梁です。

現地での適用性確認は、2024年7月に実施しています。

結果は、曇天であったため、0.3°C程度の温度差であったものの、3つの新たな亀裂を検出しています。

さらに、今回の結果と太陽高度などのデータより、リトルベルト橋では、5月～8月に適用できる可能性が高いことを確認しています。

写真-2 リトルベルト橋

Photo 2 Little Belt Bridge

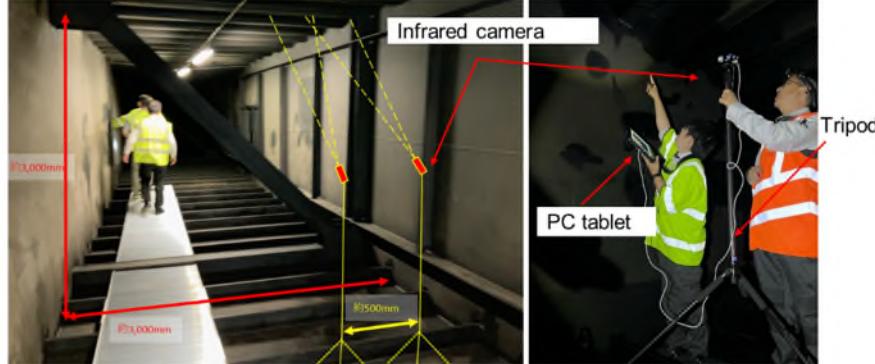


写真-3 亀裂調査状況

Photo 3 Detection of Cracks

Technical Contribution

Applicability of fatigue crack detection with infrared thermography camera on overseas (Denmark)

Honshu-Shikoku Bridge Expressway and Kobe University developed the fatigue crack inspection method with infrared thermography camera for trough-rib steel deck as a collaborative study. This method enables the detection of cracks from a distance without removing the coating by measuring the thermal profile from the deck plate to trough-rib generated by solar light. Previous study showed that temperature gap between the deck plate and the trough-rib needed to be 0.5°C or higher in Honshu-Shikoku Bridges to adapt this method. And it is affected by climate and solar altitude. Therefore, we checked the applicability of fatigue crack detection at Little Belt bridge in Denmark by conducting the field test.

The Little Belt Bridge is a suspension bridge located between the island of Funen and the mainland of Jutland in Denmark. This bridge was opened to traffic in 1970 and has a main span of 600m and two side spans of 240m for a total length of 1,080m.

Field applicability verifications were conducted in July 2024.

As a result, though temperature gap between the deck plate and the trough-rib was approximately 0.3°C due to overcast conditions, 3 cracks were detected by T-gap method. These results indicate that this method is applicable to these bridges.

Furthermore based on the results and data such as solar altitude, we confirmed that it is likely to be applicable during the period from May to August at the Little Belt bridge.

技術貢献

十津川村人道吊橋のメンテナンス技術協力

奈良県十津川村は、村域の約96%が森林で、急峻な地形の緩やかな部分に集落が点在しています。車による交通が発達する以前は、渡河手段として多くの人道吊橋が架設されており、現在も、架設から50年以上経過した人道吊橋が約40橋存在しています。

JB本四高速は、インフラメンテナンス国民会議近畿本部フォーラムおよび奈良県十津川村と三者で「人道吊橋のメンテナンス技術相互協力協定(協定締結:2020年3月26日)」を結び、技術協力を継続しています。今回、技術協定に基づき補修・補強を行い、2025年3月に供用を再開した猿飼橋(人道吊橋)の視察会(2025年10月1日開催)に参加し、併せて村内の人道吊橋の現地調査を実施しています。

まず視察した猿飼橋は1960年頃に完成した橋長約143mの単径間人道吊橋です。2015年12月の定期点検でIV判定となり通行止めされました。昨年3月までの工事によりケーブル定着部の補強などが行われています。その後の意見交換会ではメンテナンス課題の解決に向け、技術協力継続を相互に確認しております。

翌日、十津川村役場の案内で谷瀬の吊橋(谷瀬大橋)や熊野古道へ通じる柳本橋など、数橋の人道吊橋を調査し、観光利用の状況、過去の補修・補強履歴、吊橋の設置環境を確認し、今後の技術協力の参考としております。

JB本四高速では、今後も技術による社会貢献を続け、協定に基づく技術助言を継続していく所存です。

写真-4 猿飼橋

Photo 4 Sarukai Bridge

Technical Contribution

Technical cooperation for the maintenance of the pedestrian suspension bridge in Totsukawa Village

Totsukawa village in Nara Prefecture is covered by forest for approximately 96%, and settlements are scattered in the gentler section of the steep terrain. Before the development of automobile transportation, many suspension bridges for pedestrians are erected to cross the river. Now, there are about 40 suspension bridges for pedestrians that were erected over 50 years ago.

HSBE (Honshu-Shikoku Bridge Expressway Co., Ltd.) entered into an agreement with Kinki regional forum of Japanese Congress for Infrastructure Management and Totsukawa village on March 26, 2020, HSBE has continued to provide technical cooperation.

We participated in the inspection tour of Sarukai bridge held on October 1, 2025, which was repaired and reinforced based on the agreement and was reopened in March, 2025. And a site visit of other suspension bridges in the village was conducted.

Sarukai bridge is a single-span suspension bridge for pedestrians which was completed around 1960. This bridge had been closed since the regular inspection, which was conducted in December, 2015, was classified as Grade IV (Urgent measure required). In the inspection tour, the reinforcement status of cable fixing section after the repair and reinforcement work was checked. And the continuation of the technical cooperation was mutually confirmed.

Next day of the inspection tour, a site visit of some suspension bridges was conducted under the guidance of the Totsukawa village office, such as Tanize Suspension Bridge and Yanagimoto Bridge leading to the Kumano Kodo (ancient path). The tourism usage situation, the past repair and reinforcement history and the environment where these bridges are located were checked.

HSBE intend to continue contributing to society through our technology and providing technical advice based on the agreement.

写真-5 地元主催の渡り初め式(提供:十津川村)

Photo 5 Local bridge crossing ceremony

Honshu-Shikoku Bridge Expressway Co., LTD.

4-1-22 Onoedori, Chuo-ku, Kobe, 651-0088, Japan

Tel: +81-78-291-1071 Fax: +81-78-291-1087

Long-Span Bridge Engineering Center

<https://www.jb-honshi.co.jp>

発注者支援業務について

本州四国連絡高速道路株式会社では、本州四国連絡橋の建設・維持管理を通じて培った技術を発注者支援業務という形で提供を進めてまいります。橋梁の計画・設計・施工から維持管理まで、事業主体の立場に立って技術的サポートをさせていただきます。ご相談連絡先:長大橋技術部 技術支援課 TEL 078 (291) 1337